3.317 \(\int \frac{(d \sec (e+f x))^{3/2}}{\sqrt{b \tan (e+f x)}} \, dx\)

Optimal. Leaf size=131 \[ \frac{d \sqrt{b \sin (e+f x)} \sqrt{d \sec (e+f x)} \tan ^{-1}\left (\frac{\sqrt{b \sin (e+f x)}}{\sqrt{b}}\right )}{\sqrt{b} f \sqrt{b \tan (e+f x)}}+\frac{d \sqrt{b \sin (e+f x)} \sqrt{d \sec (e+f x)} \tanh ^{-1}\left (\frac{\sqrt{b \sin (e+f x)}}{\sqrt{b}}\right )}{\sqrt{b} f \sqrt{b \tan (e+f x)}} \]

[Out]

(d*ArcTan[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Sin[e + f*x]])/(Sqrt[b]*f*Sqrt[b*Tan[e + f
*x]]) + (d*ArcTanh[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Sin[e + f*x]])/(Sqrt[b]*f*Sqrt[b*
Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.106436, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {2616, 2564, 329, 212, 206, 203} \[ \frac{d \sqrt{b \sin (e+f x)} \sqrt{d \sec (e+f x)} \tan ^{-1}\left (\frac{\sqrt{b \sin (e+f x)}}{\sqrt{b}}\right )}{\sqrt{b} f \sqrt{b \tan (e+f x)}}+\frac{d \sqrt{b \sin (e+f x)} \sqrt{d \sec (e+f x)} \tanh ^{-1}\left (\frac{\sqrt{b \sin (e+f x)}}{\sqrt{b}}\right )}{\sqrt{b} f \sqrt{b \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(d*Sec[e + f*x])^(3/2)/Sqrt[b*Tan[e + f*x]],x]

[Out]

(d*ArcTan[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Sin[e + f*x]])/(Sqrt[b]*f*Sqrt[b*Tan[e + f
*x]]) + (d*ArcTanh[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Sin[e + f*x]])/(Sqrt[b]*f*Sqrt[b*
Tan[e + f*x]])

Rule 2616

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^(m + n)*(b
*Tan[e + f*x])^n)/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(d \sec (e+f x))^{3/2}}{\sqrt{b \tan (e+f x)}} \, dx &=\frac{\left (d \sqrt{d \sec (e+f x)} \sqrt{b \sin (e+f x)}\right ) \int \frac{\sec (e+f x)}{\sqrt{b \sin (e+f x)}} \, dx}{\sqrt{b \tan (e+f x)}}\\ &=\frac{\left (d \sqrt{d \sec (e+f x)} \sqrt{b \sin (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1-\frac{x^2}{b^2}\right )} \, dx,x,b \sin (e+f x)\right )}{b f \sqrt{b \tan (e+f x)}}\\ &=\frac{\left (2 d \sqrt{d \sec (e+f x)} \sqrt{b \sin (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{x^4}{b^2}} \, dx,x,\sqrt{b \sin (e+f x)}\right )}{b f \sqrt{b \tan (e+f x)}}\\ &=\frac{\left (d \sqrt{d \sec (e+f x)} \sqrt{b \sin (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{1}{b-x^2} \, dx,x,\sqrt{b \sin (e+f x)}\right )}{f \sqrt{b \tan (e+f x)}}+\frac{\left (d \sqrt{d \sec (e+f x)} \sqrt{b \sin (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{1}{b+x^2} \, dx,x,\sqrt{b \sin (e+f x)}\right )}{f \sqrt{b \tan (e+f x)}}\\ &=\frac{d \tan ^{-1}\left (\frac{\sqrt{b \sin (e+f x)}}{\sqrt{b}}\right ) \sqrt{d \sec (e+f x)} \sqrt{b \sin (e+f x)}}{\sqrt{b} f \sqrt{b \tan (e+f x)}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{b \sin (e+f x)}}{\sqrt{b}}\right ) \sqrt{d \sec (e+f x)} \sqrt{b \sin (e+f x)}}{\sqrt{b} f \sqrt{b \tan (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 4.25268, size = 105, normalized size = 0.8 \[ -\frac{\sqrt{b \tan (e+f x)} (d \sec (e+f x))^{3/2} \left (\tan ^{-1}\left (\frac{\sqrt{\sec (e+f x)}}{\sqrt [4]{\tan ^2(e+f x)}}\right )-\tanh ^{-1}\left (\frac{\sqrt{\sec (e+f x)}}{\sqrt [4]{\tan ^2(e+f x)}}\right )\right )}{b f \sqrt [4]{\tan ^2(e+f x)} \sec ^{\frac{3}{2}}(e+f x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Sec[e + f*x])^(3/2)/Sqrt[b*Tan[e + f*x]],x]

[Out]

-(((ArcTan[Sqrt[Sec[e + f*x]]/(Tan[e + f*x]^2)^(1/4)] - ArcTanh[Sqrt[Sec[e + f*x]]/(Tan[e + f*x]^2)^(1/4)])*(d
*Sec[e + f*x])^(3/2)*Sqrt[b*Tan[e + f*x]])/(b*f*Sec[e + f*x]^(3/2)*(Tan[e + f*x]^2)^(1/4)))

________________________________________________________________________________________

Maple [C]  time = 0.214, size = 344, normalized size = 2.6 \begin{align*}{\frac{\cos \left ( fx+e \right ) \sqrt{2} \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{2\,f \left ( \cos \left ( fx+e \right ) -1 \right ) } \left ( 2\,i{\it EllipticF} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) -i+\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},{\frac{\sqrt{2}}{2}} \right ) -i{\it EllipticPi} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) -i+\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},{\frac{1}{2}}-{\frac{i}{2}},{\frac{\sqrt{2}}{2}} \right ) -i{\it EllipticPi} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) -i+\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},{\frac{1}{2}}+{\frac{i}{2}},{\frac{\sqrt{2}}{2}} \right ) +{\it EllipticPi} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) -i+\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},{\frac{1}{2}}-{\frac{i}{2}},{\frac{\sqrt{2}}{2}} \right ) -{\it EllipticPi} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) -i+\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},{\frac{1}{2}}+{\frac{i}{2}},{\frac{\sqrt{2}}{2}} \right ) \right ) \sqrt{{\frac{-i \left ( \cos \left ( fx+e \right ) -1 \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{i\cos \left ( fx+e \right ) -i+\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{-{\frac{i\cos \left ( fx+e \right ) -i-\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}} \left ({\frac{d}{\cos \left ( fx+e \right ) }} \right ) ^{{\frac{3}{2}}}{\frac{1}{\sqrt{{\frac{b\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) }}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*sec(f*x+e))^(3/2)/(b*tan(f*x+e))^(1/2),x)

[Out]

1/2/f*2^(1/2)*(2*I*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-I*EllipticPi(((I*cos(
f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2-1/2*I,1/2*2^(1/2))-I*EllipticPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*
x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2))+EllipticPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2-1/2*I,1/2*2^(
1/2))-EllipticPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2)))*cos(f*x+e)*(-I*(cos(f*
x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x
+e))^(1/2)*(d/cos(f*x+e))^(3/2)*sin(f*x+e)^2/(cos(f*x+e)-1)/(b*sin(f*x+e)/cos(f*x+e))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d \sec \left (f x + e\right )\right )^{\frac{3}{2}}}{\sqrt{b \tan \left (f x + e\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)/(b*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*sec(f*x + e))^(3/2)/sqrt(b*tan(f*x + e)), x)

________________________________________________________________________________________

Fricas [B]  time = 3.01246, size = 1662, normalized size = 12.69 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)/(b*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(2*d*sqrt(-d/b)*arctan(1/4*(cos(f*x + e)^3 - 5*cos(f*x + e)^2 - (cos(f*x + e)^2 + 6*cos(f*x + e) + 4)*si
n(f*x + e) - 2*cos(f*x + e) + 4)*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(-d/b)*sqrt(d/cos(f*x + e))/(d*cos(f*x
+ e)^2 - (d*cos(f*x + e) + d)*sin(f*x + e) - d)) - d*sqrt(-d/b)*log((d*cos(f*x + e)^4 - 72*d*cos(f*x + e)^2 +
8*(7*cos(f*x + e)^3 - (cos(f*x + e)^3 - 8*cos(f*x + e))*sin(f*x + e) - 8*cos(f*x + e))*sqrt(b*sin(f*x + e)/cos
(f*x + e))*sqrt(-d/b)*sqrt(d/cos(f*x + e)) + 28*(d*cos(f*x + e)^2 - 2*d)*sin(f*x + e) + 72*d)/(cos(f*x + e)^4
- 8*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 - 2)*sin(f*x + e) + 8)))/f, 1/8*(2*d*sqrt(d/b)*arctan(1/4*(cos(f*x + e)
^3 - 5*cos(f*x + e)^2 + (cos(f*x + e)^2 + 6*cos(f*x + e) + 4)*sin(f*x + e) - 2*cos(f*x + e) + 4)*sqrt(b*sin(f*
x + e)/cos(f*x + e))*sqrt(d/b)*sqrt(d/cos(f*x + e))/(d*cos(f*x + e)^2 + (d*cos(f*x + e) + d)*sin(f*x + e) - d)
) + d*sqrt(d/b)*log((d*cos(f*x + e)^4 - 72*d*cos(f*x + e)^2 - 8*(7*cos(f*x + e)^3 + (cos(f*x + e)^3 - 8*cos(f*
x + e))*sin(f*x + e) - 8*cos(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/b)*sqrt(d/cos(f*x + e)) - 28*(
d*cos(f*x + e)^2 - 2*d)*sin(f*x + e) + 72*d)/(cos(f*x + e)^4 - 8*cos(f*x + e)^2 + 4*(cos(f*x + e)^2 - 2)*sin(f
*x + e) + 8)))/f]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))**(3/2)/(b*tan(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d \sec \left (f x + e\right )\right )^{\frac{3}{2}}}{\sqrt{b \tan \left (f x + e\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)/(b*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((d*sec(f*x + e))^(3/2)/sqrt(b*tan(f*x + e)), x)